Home
Class 12
MATHS
If f(x)=cos[pi^2]x , where [x] stands fo...

If `f(x)=cos[pi^2]x ,` where `[x]` stands for the greatest integer function, then `f(pi/2)=-1` (b) `f(pi)=1` `f(-pi)=0` (d) `f(pi/4)=1`

Promotional Banner

Similar Questions

Explore conceptually related problems

If f(x)=cos[pi^(2)]x+cos[-pi^(2)]x , where [x] stands for the greatest integer function, then

If f(x)=cos[pi^(2)]x+cos[-pi^(2)]x, where [x] stands for the greatest integer function,then (a) f((pi)/(2))=-1( b) f(pi)=1( c) f(-pi)=0 (d) f((pi)/(4))=1

If f(x)=cos[pi]x+cos[pi x], where [y] is the greatest integer function of y then f((pi)/(2)) is equal to

f(x)=1+[cos x]x in 0<=x<=(pi)/(2) (where [.] denotes greatest integer function)

Let f(x) = (sin (pi [ x - pi]))/(1+[x^2]) where [] denotes the greatest integer function then f(x) is

If f(x)=cos[(1)/(2)pi^(2)]x+sin[(1)/(2)pi^(2)]x,[x] denoting the greatest integer function,then-

Let f(x)=[x]cos ((pi)/([x+2])) where [ ] denotes the greatest integer function. Then, the domain of f is

If f:Rto[-1,1] where f(x)=sin((pi)/2[x]), (where [.] denotes the greatest integer fucntion), then

f(x)=2^(cos^(4)pi x+x-[x]+cos^(2)pi x), where [.] denotes the greatest integer function.