Home
Class 12
MATHS
Let alpha be a root of the equation (2si...

Let `alpha` be a root of the equation `(2sinx-cosx)(1+cosx)=sin^2x` `beta` is a root of the equation `3cos^2x-10cosx+3=0` `gamma` be a root of the equation `1-sin2x=cosx-sinx` `0<=alpha,beta,gamma<=pi/2``sin alpha+sin beta+sin gamma` can be equal to (A) `(14+3sqrt(2))/6` (B) 43226 (C) `(3+4sqrt(2))/6` (D) `(1+sqrt(2))/2`

Promotional Banner

Similar Questions

Explore conceptually related problems

Slove (2sinx-cosx)(1+cosx)=sin^2x

alpha is a root of equation ( 2 sin x - cos x ) (1+ cos x)=sin^2 x , beta is a root of the equation 3 cos ^2x - 10 cos x +3 =0 and gamma is a root of the equation 1-sin2 x = cos x- sin x : 0 le alpha , beta, gamma , le pi//2 sin alpha + sin beta + sin gamma can be equal to

alpha is a root of equation ( 2 sin x - cos x ) (1+ cos x)=sin^2 x , beta is a root of the equation 3 cos 2x - 10 cos x +3 =0 and gamma is a root of the equation 1-sin2 x = cos x- sin x : 0 le alpha , beta, gamma , le pi//2 cos alpha + cos beta + cos gamma can be equal to

alpha is a root of equation ( 2 sin x - cos x ) (1+ cos x)=sin^2 x , beta is a root of the equation 3 cos 2x - 10 cos x +3 =0 and gamma is a root of the equation 1-sin2 x = cos x- sin x : 0 le alpha , beta, gamma , le pi//2 sin (alpha - beta ) is equal to

Solve the equation sin2x-12(sinx-cosx)+12=0

Let A(alpha, 1/(alpha)),B(beta,1/(beta)),C(gamma,1/(gamma)) be the vertices of a DeltaABC where alpha, beta are the roots of the equation x^(2)-6p_(1)x+2=0, beta, gamma are the roots of the equation x^(2)-6p_(2)x+3=0 and gamma, alpha are the roots of the equation x^(2)-6p_(3)x+6=0, p_(1),p_(2),p_(3) being positive. Then the coordinates of the cenroid of DeltaABC is

Solve the equation (sinx+cosx)^(1+sin2x)=2 , when 0 lexlepi

Solve the equation (sinx+cosx)^(1+sin2x)=2, when 0lt=xlt=pi