Home
Class 12
MATHS
Lim(x rarr 0) (sqrt(x+a) - sqrt a)/x...

`Lim_(x rarr 0) (sqrt(x+a) - sqrt a)/x`

Promotional Banner

Similar Questions

Explore conceptually related problems

lim_(x rarr0)sqrt(x)=

lim_(x rarr0)(sqrt(a+x)-sqrt(a))/(x)

The value of lim_(x rarr 0) (sqrt(a+x)- sqrt(a-x))/x =

lim_(x rarr 0) (sqrt(1+x) - sqrt(1-x)/x =

Evaluate lim_(x rarr 0) (sqrt(1 +x) - sqrt(1 - x))/(2x)

lim_(x rarr0)(sqrt(2+x)-sqrt(2))/(x)

Evaluate the following limit : lim_(x rarr 0) (sqrt(x+2)-sqrt2)/(x) .

Lim_(x rarr0)(sqrt(1+x)-sqrt(1-x))/(x)