Home
Class 12
MATHS
If a,b and c be in A.P..prove that co...

If `a,b and c` be in `A.P.`.prove that `cosA cot(A/2),cosB cot(B/2), and cosC cot(C/2)` are in `A.P.`

Promotional Banner

Similar Questions

Explore conceptually related problems

If a,b and c be in A.P. prove that cos A cot((A)/(2)),cos B cot((B)/(2)), and cos C cot((C)/(2)) are in A.P.

In any Delta ABC,cot((A)/(2)),cot((B)/(2)),cot((C)/(2)) are in A.P.

If a^(2),b^(2) and c^(2) be in A.P. prove that cot A,cot B and cot C are in A.P. also.

In any !ABC ,If cot(A/2),cot(B/2),cot(C/2) are in A.P.,then a,b,c are in

In any triangle ABC prove that cot(A/2)+cot(B/2)+cot(C/2)=cot(A/2)cot(B/2)cot(C/2)

Prove that (b + c -a) (cot.(B)/(2) + cot.(C)/(2)) = 2a cot.(A)/(2)

In any /_ABC(cot A)/(2),(cot B)/(2),(cot c)/(2) are in A.P.then

In any triangle ABC , prove that a(cosB+cot(A/2).sinB)=b+c .

If a,b,c are in A.P., prove that a^(2)+c^(2)-2bc=2a(b-c) .

If a^(2),b^(2),c^(2) are in A.P.then prove that cot A,cot B,cot C are in A.P.