Home
Class 12
MATHS
In a triangle ABC, prove that: tan^2, A/...

In a triangle ABC, prove that: `tan^2, A/2+tan^2, B/2+tan^2, C/2ge1`

Promotional Banner

Similar Questions

Explore conceptually related problems

In acute angled triangle ABC prove that tan ^(2)A+tan^(2)B+tan^(2)Cge9 .

In a triangle ABC, prove that (a^2+b^2-c^2)tan C-(b^2+c^2-a^2)tan A=0

If A+B+C=pi , prove that : tan( A/2) tan (B/2) + tan (B/2 )tan (C/2)+ tan( C/2) tan (A/2) =1

In a triangle ABC, tanA + tanB + tanC = 9. If tan^2 A+ tan^2 B + tan^2 C= k then the least value of k^(9/7) is

In a Delta ABC prove that (tan(A+B))/(2)=(cot C)/(2)

If A+B+C=pi, prove that tan^(2)(A)/(2)+tan^(2)(B)/(2)+tan^(2)(C)/(2)>=1

In any triangle ABC , prove that tan ((A-B)/(2))=((a-b)/(a+b))cot (C)/(2) .

If A,B,C are the interior angles of a triangle ABC, prove that tan((C+A)/(2))=(cot B)/(2)( ii) sin((B+C)/(2))=(cos A)/(2)

In a Delta ABC, prove that tan((A+B)/(2))=cot((c)/(2))