Home
Class 12
MATHS
In a triangle ABC, sin^4A+sin^4B+ sin^4C...

In a `triangle ABC,` `sin^4A+sin^4B+ sin^4C=3/2+2cosAcosBcosC+1/2cos2Acos2Bcos2C`

Promotional Banner

Similar Questions

Explore conceptually related problems

In a /_ABC,sin^(4)A+sin^(4)B+sin^(4)C=(3)/(2)+2cos A cos B cos C+(1)/(2)cos2A cos2B cos2C

If in a triangle ABC,4sin A = 4 sin B=3 sin C, then cos C=

Prove that in a triangle ABC , sin^(2)A - sin^(2)B + sin^(2)C = 2sin A *cos B *sin C .

In a triangle ABC if (sin2A+sin2B+sin2C)/(cos A+cos B+cos C-1)=((lambda)/(2))cos((A)/(2))cos((B)/(2))cos((C)/(2)) then lambda equals

If A, B, C are the angles of a triangle then sin^(2)A+sin^(2)B+sin^(2)C-2cosAcosBcosC is equal to

In a triangle ABC, if sin A sin(B-C)=sinC sin(A-B) , then prove that cos 2A,cos2B and cos 2C are in AP.

"In triangle ABC " "c(sin^(2)A+sin^(2)B)=sin C(a sin A+b sin B)

If A, B, C are angles of a triangle, then sin^(2)A+sin^(2)B+sin^(2)C-2cosAcosBcosC=?

If in a triangle ABC,sin^(4)A+sin^(4)B+sin^(4)C=sin^(2)B sin^(2)C+2sin^(2)C sin^(2)A+2sin^(2)A sin^(2)B ,show that,one of the angles of the triangle is 30^(@) or 150^(@)