Home
Class 12
MATHS
In a triangle ABC, Prove that: sin^3A+si...

In a triangle ABC, Prove that: `sin^3A+sin^3B+sin^3C= 3cos, A/2 cos, B/2 cos, C/2 +cos, (3A)/2 cos, (3B)/2 cos, (3C)/2`

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that : (sin 2A+sin 2B + sin 2C)/(cos A + cos B + cos C-1) = 8 cos(A/2) cos( B/2) cos( C/2)

If A+B+C=pi, prove that sin^(2)A+sin^(2)B+sin^(2)C=2(1+cos A cos B cos C)

In any triangle ABC, prove that: a cos A+b cos B+c cos C=2a sin B sin C

In a triangle ABC if (sin2A+sin2B+sin2C)/(cos A+cos B+cos C-1)=((lambda)/(2))cos((A)/(2))cos((B)/(2))cos((C)/(2)) then lambda equals

In any triangle ABC,prove that sin^(3)A cos(B-C)+sin^(3)B cos(C-A)+sin^(3)C cos(A-B)=3sin A sin B sin C

In any triangle ABC, prove that following: quad a cos A=b cos B=c cos C=2b sin A sin C=2c sin A sin B

For any triangle ABC,prove that a cos A+b cos B+c cos C=2a sin B sin C

In a ABC, prove that sin^(3)A cos(B-C)+sin^(3)B cos(C-A)+sin^(3)C cos(A-B)=3s in As in Bs in

In a /_ABC,sin^(4)A+sin^(4)B+sin^(4)C=(3)/(2)+2cos A cos B cos C+(1)/(2)cos2A cos2B cos2C

In any triangle ABC, prove that: a^(3)cos(B-C)+b^(3)cos(C-A)+c^(3)cos(A-B)=3abc