Home
Class 12
MATHS
If in a triangle A B C ,cosA+2cosB+cosC=...

If in a triangle `A B C ,cosA+2cosB+cosC=2` prove that the sides of the triangle are in `AP`

Promotional Banner

Similar Questions

Explore conceptually related problems

In a triangle A B C , if cos A+2\ cos B+cos C=2. prove that the sides of the triangle are in A.P.

In a triangle ABC cosA+cosB+cosC<=k then k=

In triangle ABC, 2(bc cosA-ac cosB-ab cosC)=

If in a triangle ABC, (cosA)/a=(cosB)/b=(cosC)/c ,then the triangle is

In triangleABC , If cosA+cosB+cosC=(3)/(2) , then the triangle is

In a triangle ABC , acosB + b cosC + c cosA =(a+b+c)/2 then

If cosA + cosC = 4 sin^2 (B/2) , then the sides a, b, c of triangle are in ?

In triangleABC, (b+c)cosA+(c+a)cosB+(a+b)cosC=