Home
Class 12
MATHS
In a triangle ABC, prove that r^2+r1^2+r...

In a triangle ABC, prove that `r^2+r_1^2+r_2^2+r_3^2=16R^2-a^2-b^2-c^2.`

Promotional Banner

Similar Questions

Explore conceptually related problems

In any A B C , prove that r^2+r1 2+r2 2+r3 2=16 R^2-a^2-b^2-c^2dot

prove that : 1/r^2+1/r_1^2+1/r_2^2+1/r_3^2=(a^2+b^2+c^2)/ /_\^2

In a triangle ABC prove that r_1r_2r_3=r^3 cot^2 (A/2). cot^2 (B/2).cot^2(C/2)

In any Delta ABC, prove that r.r_(1).r_(2).r_(3)=Delta^(2)

Prove that r_(1)^(2)+r_(2)^(2) +r_(3)^(3) +r^(2) =16R^(2) -a^(2) -b^(2) -c^(2). where r= in radius, R = circumradius,, r_(1), r_(2), r_(3) are ex-radii.

In a Delta ABC prove that r_(1)r_(2)r_(3)=r^(3)cot^(2)((A)/(2))cot^(2)((B)/(2))cot^(2)((C)/(2))

In a triangleABC , if 1/r^(2) + 1/r_(1)^(2) + 1/r_(2)^(2) + 1/r_(3)^(2) = (a^(2) + b^(2) + c^(2))/(Delta^(n)) , then n is equal to ………..

Show that 16R^(2)r r_(1) r _(2) r_(3)=a^(2) b ^(2) c ^(2)

If in a triangle ABC,r_(1)=2,r_(2)=3 and r_(3)=6 ,then b=

In triangle ABC, if r_(1)+r_(2)=3R and r_(2)+r_(3)=2R , then