Home
Class 12
MATHS
(r1)/((s-b)(s-c))+(r2)/((s-c)(s-a))+(r3)...

`(r_1)/((s-b)(s-c))+(r_2)/((s-c)(s-a))+(r_3)/((s-a)(s-b))=3/r`

Promotional Banner

Similar Questions

Explore conceptually related problems

If 2s=a+b+c, prove that (s-a)^(3)+(s-b)^(3)+(s-c)^(3)-3(s-a)(s-b)(s-c)=(1)/(2)(a^(3)+b^(3)+c^(3)-3abc)

In ABC, show that a^(2)(s-a)+b^(2)(s-b)+c^(2)(s-c))=4R(a+r sin((A)/(2))sin((B)/(2))sin((C)/(2)))

If s_(n)=sum_(r

In Delta ABC, if (a-b)(s-c)=(b-c)(s-a) then r_(1),r_(2),r_(3) are in

If in Delta ABC, (a -b) (s-c) = (b -c) (s-a) , prove that r_(1), r_(2), r_(3) are in A.P.

In a /_ABC if (s-a)/(a-b)=(s-c)/(b-c) then r_(1),r_(2),r_(3) are in AP

In a triangle ABC, if (a-b)/(b-c)= (s-a)/(s-c) , then r_1,r_2,r_3 are in

If S_(r)=alpha^(r)+beta^(r)+gamma^(r) then show that det[[S_(2),S_(1),S_(2)S_(1),S_(2),S_(3)S_(2),S_(3),S_(4)]]=(alpha-beta)^(2)(beta-gamma)^(2)(gamma-alpha)^(2)det[[S_(1),S_(2),S_(3)S_(2),S_(3),S_(4)]]=(alpha-beta)^(2)(beta-gamma)^(2)(gamma-alpha)^(2)

If S_(r)=alpha^(r)+beta^(r)+gamma^(r) then show that det[[S_(0),S_(1),S_(2)S_(1),S_(2),S_(3)S_(2),S_(3),S_(4)]]=(alpha-beta)^(2)(beta-gamma)^(2)(gamma-alpha)^(2)det[[S_(1),S_(2),S_(3)S_(2),S_(3),S_(4)]]=(alpha-beta)^(2)(beta-gamma)^(2)(gamma-alpha)^(2)