Home
Class 12
MATHS
In acute angled triangle ABC prove that ...

In acute angled `triangle ABC` prove that `tan ^(2)A+tan^(2)B+tan^(2)Cge9`.

Promotional Banner

Similar Questions

Explore conceptually related problems

In a triangle ABC, prove that: tan^2, A/2+tan^2, B/2+tan^2, C/2ge1

Prove that in an acute-angled triangle ABC , tan^(2) frac{A}{2} + tan^(2) frac{B}{2} + tan^(2) frac{C}{2} ge 1

If A, B, C be an acute angled triangle, then the minimum value of tan^(4)A+tan^(4)B+tan^(4)C will be

In an actue-angled triangle ABC Statement-1: tan^(2)""(A)/(2)+tan^(2)""(B)/(2)+tan^(2)""(C)/(2)ge1 Statement-2: tanAtanB tanCge3sqrt3

In an acute angled triangle ABC,if (tan A)/(2)=(tan B)/(3)=(tan C)/(5) then /_ABC is equal to

If A,B,C are the interior angles of a triangle ABC, prove that (tan(B+C))/(2)=(cot A)/(2)

in triangle ABC,tan A+tan B+tan C=

If A,B,C are the interior angles of a triangle ABC, prove that tan((C+A)/(2))=(cot B)/(2)( ii) sin((B+C)/(2))=(cos A)/(2)

In a triangle ABC, prove that (a^2+b^2-c^2)tan C-(b^2+c^2-a^2)tan A=0