Home
Class 12
MATHS
In a triangle ABC, angleB=pi/3, angleC=p...

In a `triangle ABC`, `angleB=pi/3`, `angleC=pi/4` and D divides `BC` internally in the ratio `1 : 3` Then `(angleBAD)/(angleCAD)=` is equal to (a) `1/sqrt6` (b) `1/3` (c) `1/sqrt3` (d) `sqrt(2/3)`

Promotional Banner

Similar Questions

Explore conceptually related problems

In a triagnle ABC, angle B=pi/3 " and " angle C = pi/4 let D divide BC internally in the ratio 1:3 .Then (sin (angle BAD))/((Sin (angle CAD)) is equal to

In a DeltaABC, angleB=(pi)/(3) and angleC=(pi)/(4) let D divide BC internally in the ratio 1:3 , then (sin(angleBAD))/(sin(angleCAD)) is equal to :

In triangle ABC,/_B=(pi)/(3), and /_C=(pi)/(4)* Let D divided BC internally in the ratio 1:3. Then (sin/_BAD)/(sin/_CAB) equals (a) (1)/(sqrt(6)) (b) (1)/(3)(c)(1)/(sqrt(3)) (d) sqrt((2)/(3))

In a Delta ABC,/_B=60^(@) and /_C=45^(@). Let D divides BC internally in the ratio 1:3. then value of (sin/_BAD)/(sin/_CAD) is (A) sqrt((2)/(3)) (B) (1)/(sqrt(3)) (C) (1)/(sqrt(6)) (D) (1)/(3)

In Delta ABC, angle B=(pi)/(4),angle C=(pi)/(6) . D is a point on BC which divides it in the ratio 1 : 3, angle DAB=beta , then

In triangle ABC, angleA=pi/3 and b:c =2:3, tan theta=sqrt3/5, 0 lt theta lt pi/2 then

In a triangle ABC, a=1cm, b=sqrt3 and C=(pi)/(6) , find the third side of the triangle :