Home
Class 12
MATHS
If a, b,c be the sides foi a triangle AB...

If a, b,c be the sides foi a triangle ABC and if roots of equation `a(b-c)x^2+b(c-a)x+c(a-b)=0` are equal then `sin^2 A/2, sin^2, B/2, sin^2 C/2` are in (A) A.P. (B) G.P. (C) H.P. (D) none of these

Promotional Banner

Similar Questions

Explore conceptually related problems

If the roots of equation a(b-c)x^2+b(c-a)x+c(a-b)=0 be equal prove that a,b,c are in H.P.

In triangle ABC, if cosA+2cosB+cosC=2,t h e na ,b ,c are in (A) A.P. (B) G.P. (C) H.P. (D) none of these

If a,b,c,d, x are real and the roots of equation (a^2+b^2+c^2)x^2-2(ab+bc+cd)x+(b^2+c^2+d^2)=0 are real and equal then a,b,c,d are in (A) A.P (B) G.P. (C) H.P. (D) none of these

If a,b,c are in A.P. then the roots of the equation (a+b-c)x^2 + (b-a) x-a=0 are :

If a, b, c are in H.P., then the equation a(b-c) x^(2) + b(c-a)x+c(a-b)=0

If a,b,c are in A.P ,then 3^(a),3^(b),3^(c) shall be in (A) A.P (B) G.P (C) H.P (D) None of these

Roots of the equation a(b-c)x^2+b(c-a)x+c(a-b)=0 are real and equal, then (A) a+b+c!=0 (B) a,b,c are in H.P. (C) a,b,c are in H.P. (D) a,b,c are in G.P.

If cos2B=(cos(A+C))/(cos(A-C)), then tan A,tan B,tan C are in (a)A.P.(b) G.P.(c) H.P.(d) none of these

If |[x+a, y+b, z+c] , [y+b, z+c, x+A] , [z+c, x+a, y+b]|=0 and a+c=-b then x,-y/2,z are in (A) A.P. (B) G.P. (C) H.P. (D) None of these