Home
Class 12
MATHS
In a triangle ABC if a^4+b^4+c^4=2c^2(a^...

In a triangle ABC if `a^4+b^4+c^4=2c^2(a^2+b^2)`, then angle C is equal to (A) `60^0` (B) `120^0` (C) `45^0` (D) `135^0`

Promotional Banner

Similar Questions

Explore conceptually related problems

In a triangle A B C , if B=30^0a n d\ c=sqrt(3)\ b , then A can be equal to 45^0 (b) 60^0 (c) 90^0 (d) 120^0

In triangle, ABC if 2a^(2) b^(2) + 2b^(2) c^(2) = a^(4) + b^(4) + c^(4) , then angle B is equal to

In triangle,ABC if 2a^(2)b^(2)+2b^(2)c^(2)=a^(4)+b^(4)+c^(4) then angle B is equal to 45^(0)(b)135^(0)120^(@)(d)60^(@)

In a triangle ABC,a^(4)+b^(4)+c^(4)=2c^(2)(a^(2)+b^(2)) prove that C=45^(@) or 135^(@)

In an acute triangle ABC if 2a^(2)b^(2)+2b^(2)c^(2)=a^(4)+b^(4)+c^(4), then angle

If a , b ,\ A are given in a triangle and c_1a n d\ c_2 are two possible values of third side such that c_1^2+c_1c_2+c_2^2=a^2 , then A is equal to 30^0 (b) 60^0 (c) 90^0 (d) 120^0

In a triangle ABC,a=3b and |A-B|= 60^(0) then tan((C)/(2))=

If in a triangle ABC,(a+b+c)(b+c-a)=k.bc, then :k 6c.0 4

In Delta ABC, if c=3.4cm,A=25^(0),B=85^(2), find a,b and angle C.