Home
Class 12
MATHS
If A+B+C=pi, prove that : cot, A/2+ cot,...

If `A+B+C=pi`, prove that : `cot, A/2+ cot, B/2 + cot, C/2 = cot, A/2 cot, B/2 cot, C/2`

Promotional Banner

Similar Questions

Explore conceptually related problems

If A+B+C=pi Prove that cot A/2+cot tB/2+cot C/2=cot A/2cot B/2cot C/2

If A+B+C=pi , prove that: cot^2 A+cot^2 B + cot^2 C ge 1

cot B cot C+cot C cot A+cot A cot B=1

a cot A+b cot B+c cot C=

In any triangle ABC prove that cot(A/2)+cot(B/2)+cot(C/2)=cot(A/2)cot(B/2)cot(C/2)

If A+B+C=pi, prove that cot A+cot B+cot C-csc A.cosec B.csc C=cot A*cot B*cot C

If A+B+C= 90^@ , Prove that cot A+cot B+cot C=cot A cot B cot C

If A+B+C =pi , show that cot A + cot B+cot C-cosec A *cosec B* cosec C = cot A*cot B*cot C .

if A+B+C=pi prove that cot((A)/(2))+cot((B)/(2))+cot((C)/(2))=cot((A)/(2))xx cot((B)/(2))xx cot((C)/(2))

In DeltaABC , prove that: cot\ A/2+cot\ B/2+cot\ C/2=((a+b+c)^(2))/(4Delta)