Home
Class 12
MATHS
In a triangle ABC cosA+cosB+cosC<=k then...

In a triangle `ABC cosA+cosB+cosC<=k` then `k=`

Promotional Banner

Similar Questions

Explore conceptually related problems

If in a triangle A B C ,cosA+2cosB+cosC=2 prove that the sides of the triangle are in AP

In a triangle ABC , acosB + b cosC + c cosA =(a+b+c)/2 then

In a tringle ABC, sin A-cosB=cosC, then angle B, is

In triangle ABC, if cosA+2cosB+cosC=2,t h e na ,b ,c are in (A) A.P. (B) G.P. (C) H.P. (D) none of these

In triangleABC , If cosA+cosB+cosC=(3)/(2) , then the triangle is

In any triangle ABC, sinA -cosB=cosC , then angle B is

If A,B,C are the angles of a given triangle ABC . If cosA.cosB.cosC= (sqrt3-1)/8 and sinA.sinB.sinC= (3+sqrt3)/8 The value of tanA+tanB+tanC is (A) (3+sqrt(3)/(sqrt(3)-1)) (B) (sqrt(3)+4/(sqrt(3)-1)) (C) (6-sqrt(3)/(sqrt(3)-1)) (D) (sqrt(3)+sqrt(2)/(sqrt(3)-1))