Home
Class 12
MATHS
3tan^-1(1/2)+2tan^-1(1/5)+sin^-1(142/(65...

`3tan^-1(1/2)+2tan^-1(1/5)+sin^-1(142/(65sqrt(5)))`

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove: tan^(-1)(1/4)+tan^(-1)(2/9)=sin^(-1)(1/(sqrt(5)))

The value of 3 "tan"^(-1)(1)/(2) + 2 "tan"^(-1)(1)/(5) + "sin"^(-1)(142)/(65sqrt(5)) is :

Prove that tan^-1(1/4)+ tan^-1(2/9) = 1/2sin^-1(4/5)

Value of 3tan^(-1)((1)/(3))+tan^(-1)((1)/(2))+sin^(-1)((1)/(sqrt(5)))+cos^(-1)((2)/(sqrt(5))) is greater than

Find the principal value of: i) sin^(-1)(sqrt(3)/2) ii) sin^(-1)(1/2) iii) cos^(-1)(1/2) iv) tan^(-1)(1) v) tan^(-1)(1/sqrt(3)) vi) sec^(-1)(2/sqrt(3)) , vii) "cosec"^(-1)(sqrt(2)) .

Prove that 2tan^(-1)((1)/(2))+tan^(-1)((1)/(7))=sin^(-1)((31)/(25sqrt(2)))

tan^(-1)(1/3)+tan^(-1)(1/5)=(1)/(2)cos^(-1)(33/65)

Which of the following is/are correct? tan[cos^(-1)(4)/(5)+tan^(-1)(2)/(3)]=(17)/(6)cos[tan^(-1)(1)/(3)+tan^(-1)(1)/(2)]=(1)/(sqrt(2))cos2tan^(-1)((1)/(3))+cos(tan^(-1)2sqrt(2))=(14)/(15)cos[2cos^(-1)(1)/(5)+sin^(-1)(1)/(5)]=-(2sqrt(6))/(6)

Prove that tan^(-1) (1/4) + tan^(-1) (2/9) = 1/2 sin^(-1) (4/5)

Prove that : tan^(-1)(1/2) + tan^(-1)(1/3) = tan^(-1)(3/5) + tan^(-1)(1/4) = pi/4