Home
Class 12
MATHS
Show that :2tan^(-1)x+sin^(-1)(2x)/(1+x^...

Show that :`2tan^(-1)x+sin^(-1)(2x)/(1+x^2)` is constant for `xgeq1,` find that constant.

Promotional Banner

Similar Questions

Explore conceptually related problems

Show that :2tan^(-1)x+sin^(-1)(2x)/(1+x^(2)) is constant for x>=1, find that constant.

Prove that 2tan^(-1)1/x=sin^(-1)((2x)/(x^(2)+1))

2 tan^(-1) x = sin^(-1) ((2x)/(1+x^(2))) , 1 le x le 1

If 2tan^(-1)x+sin^(-1)((2x)/(1+x^(2))) is independent of x then :

Let f(x) = 2 tan^(-1)x + "sin"^(-1) (2x)/(1 + x^(2)) then

If 2tan^(-1)x+sin^(-1)(2x)/(1+x^(2)) is independent of x then x>1-1

If |x| le 1 , then 2tan^(-1)x + sin^(-1)((2x)/(1+x^(2))) is equal to

If xge1 , " then :" 2 tan^(-1)x+sin^(-1)((2x)/(1+x^(2)))=...

Evaluate: int(sin(tan^(-1)x))/(1+x^(2))dx