Home
Class 12
MATHS
Prove the relation: cos^-1 x0 =(sqrt(1-x...

Prove the relation: `cos^-1 x_0 =(sqrt(1-x_0^2)/(x_1x_2x_3…to oo))` where the succesive quantities `x_r` are connected by the relation `x_(r+1)= sqrt((1+x_r)/2)`

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that (d)/(dx)(cos^(-1)x)=(1)/(sqrt(1-x^(2)) , where x in [-1,1].

Prove that (d)/(dx)("cosec"^(-1)x)=(-1)/(|x|sqrt(x^(2)-1)) , where x in R-[-1,1] .

Find the derivatives w.r.t. x: sqrt(1+sinx) + sqrt((1-x^2)/(1+x^2))

underset0 If y=cos^(-1){x sqrt(1-x)+sqrt(x)sqrt(1-x^(2))} and

If x lt 0 , then prove that cos^(-1) x = pi + tan^(-1). (sqrt(1 - x^(2)))/(x)

Integrate the following w.r.t x: (x^2+3x+1)/sqrt(1-x^2)

Prove that: lim_(x rarr oo)x(sqrt(x^(2)+1)-sqrt(x^2-1))) = 1

Prove that e^(x)+sqrt(1+e^(2x))>=(1+x)+sqrt(2+2x+x^(2))AA x in R

Determine the domain and the range of the relation R defined by R{(x+1,x+5):x in{0,1,2,3,45}}

The derivative of cos(2tan^(-1)sqrt((1-x)/(1+x)))-2cos^(-1)sqrt((1-x)/(2)) w.r.t. x is