Home
Class 12
MATHS
If cos^-1 x+cos^-1 y+cos^-1 z=pi and x+y...

If `cos^-1 x+cos^-1 y+cos^-1 z=pi and x+y+z= 3/2, ` then prove that `x=y=z`

Text Solution

AI Generated Solution

Promotional Banner

Similar Questions

Explore conceptually related problems

If cos^(-1)x+cos^(-1)y+cos^(-1)z=pi , then

If cos^(-1)x+cos^(-1)y+cos^(-1)z=pi , then

If cos^(-1) x + cos^(-1) y + cos^(-1) z = pi , then

If cos^(-1)x +cos^(-1)y +cos^(-1)z =3pi then x+y+z is :

If cos^(-1) x + cos^(-1) y + cos^(-1) z = pi" , prove that " x^(2) + y^(2)+ z^(2) + 2xyz = 1 .

If (i) cos^(-1) x + cos^(-1) y + cos^(-1) z = pi , prove that : x^(2) +y^(2) +z^(2) + 2xyz = 1 (ii) If sin^(-1) x + sin^(-1) y + sin^(-1) z = pi/2 , prove that : x^(2) +y^(2) +z^(2) +2xyz = 1

If cos^(-1)x + cos^(-1)y - cos^(-1) z = 0 , then show that x^(2) + y^(2) + z^(2) - 2xyz = 1

If cos^(-1)x+cos^(-1)y=pi/2 then prove that cos^(-1)x=sin^(-1)y

If cos^(-1)x+cos^(-1)y+cos^(-1)z=pi, where -1<=x,y,z<=1, then find the value of x^(2)+y^(2)+z^(2)+2xyz

If sin x + sin y + sin z = 0 and cos x + cos y + cos z = 0 then prove that cot (x+y)/2 = cot z and cos (x-y)/2 = pm 1/2