Home
Class 12
MATHS
If f(x)= e^(coscos^-1x^2+tancot^-1 x^2),...

If `f(x)= e^(coscos^-1x^2+tancot^-1 x^2), ` then minimum value of `f(x)` is (A) e (B) `e^2` (C) `e^(2/3` (D) none of these

Promotional Banner

Similar Questions

Explore conceptually related problems

The maximum value of x^((1)/(z)),x>0 is (a) e^((1)/(e))(b)((1)/(e))^(e)(c)1(d) none of these

The minimum value of (x)/((log)_(e)x) is e(b)1/e(c)1(d) none of these

The maximum value of (log x)/(x) is (a) 1 (b) (2)/(e)(c) e (d) (1)/(e)

The maximum value of x^(4)e^(-x^(2)) is (A) e^(2)(B)e^(-2)(C)12e^(-2)(D)4e^(-2)

The minimum value of x(log)_(e)x is equal to e (b) 1/e(c)-1/e (d) 2e( e )e

(xe^x)/(1+x)^2dx= (A) e^x/(1+x) (B) e^x/(1+x)^2 (C) e^xlog(1+x) (D) none of these

Let f(x) be a function satisfying f\'(x)=f(x) with f(0)=1 and g(x) be the function satisfying f(x)+g(x)=x^2 . Then the value of integral int_0^1 f(x)g(x)dx is equal to (A) (e-2)/4 (B) (e-3)/2 (C) (e-4)/2 (D) none of these

The function f(x)=x^(2)e^(x) has minimum value

The minimum value of e^((2x^(2)-2x+1)sin^(2)x) is e(b)(1)/(e)(c)1(d)0