Home
Class 12
MATHS
Prove that: sin^-1 (3/5) +cos^-1 (12/13)...

Prove that: `sin^-1 (3/5) +cos^-1 (12/13)+cot^-1 (56/33)=pi/2`

Text Solution

AI Generated Solution

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that cos^(-1)(3/5) + cos^(-1) (12/13) + cos^(-1)( 63/65) =pi/2 .

Prove that sin^(-1). 3/5 +cos^(-1) . 12/13 = sin^(-1). 56/65

Prove that: sin^(-1)((3)/(5))+cos^(-1)((12)/(13))=sin^(-1)((56)/(65))

Prove that cos^(-1)((3)/(5))+cos^(-1)((12)/(13))+cos^(-1)((63)/(65))=(pi)/(2)

Prove that: sin ^ (- 1) ((3) / (5)) - cos ^ (- 1) ((12) / (13)) = sin ^ (- 1) ((16) / (65))

Prove that cos^(-1).(4).(5) + cos^(-1).(12)/(13) = cos^(-1).(33)/(65)

Prove that: (cos^(-1)4)/(5)+(cos^(-1)(12))/(13)=(cos^(-1)(33))/(65)

Prove that (cos^(-1)4)/(5)+(cos^(-1)(12))/(13)=(cos^(-1)(33))/(65)

Prove that 2sin^(-1)((3)/(5))-cos^(-1)((5)/(13))=cos^(-1)((323)/(325))

Prove that : cos^(-1).(3)/(5)+ cos^(-1).(12)/(13) = sin^(-1)((12)/(5))