Home
Class 12
MATHS
Prove that: (alpha^3)/2cos e c^2(1/2tan^...

Prove that: `(alpha^3)/2cos e c^2(1/2tan^(-1)alpha/beta)+(beta^2)/2sec^2(1/2tan^(-1)beta/alpha)=(alpha+beta)(a^2+beta^2)dot`

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that: (alpha^3)/2cos e c^2(1/2tan^(-1)(alpha/beta))+(beta^3)/2s e c^2(1/2tan^(-1)(beta/alpha))=(alpha+beta)(alpha^2+beta^2) .

Prove that: (alpha^(3))/(2)csc^(2)((1)/(2)tan^(-1)(alpha)/(beta))+(beta^(2))/(2)sec^(2)((1)/(2)tan^(-1)(beta)/(alpha))=(alpha+beta)(a^(2)+beta^(2))

The value of (alpha^(3))/(2)csc^(2)((1)/(2)tan^(-1)(alpha)/(beta))+(beta^(3))/(2)sec^(2)((1)/(2)tan^(-1)((beta)/(alpha))) is equal to (alpha+beta)(alpha^(2)+beta^(2))(b)(alpha+beta)(alpha^(2)-beta^(2))(alpha+beta)(alpha^(2)+beta^(2))(d) none of these

If alpha and beta are the roots of the equation x^(2)-4x+1=0(alpha

Prove that: tan^(-1){(cos2 alpha sec2 beta+cos2 beta sec2 alpha)/(2)}=tan^(-1){tan^(2)(alpha+beta)tan^(2)(alpha-beta)}+tan

If alpha and beta are the roots of the equation x^(2)-4x+1=0(alpha>beta) then find the value of f(alpha,beta)=(beta^(3))/(2)csc^(2)((1)/(2)tan^(-1)((beta)/(alpha))+(alpha^(3))/(2)sec^(2)((1)/(2)tan^(-1)((alpha)/(beta)))