Home
Class 12
MATHS
Prove that: tan^-1 +tan^-1 ((2t)/(1-t^2)...

Prove that: `tan^-1 +tan^-1 ((2t)/(1-t^2))=tan^-1( (3t-t^3)/(1-3t^2)), if - 1/sqrt(3),xlt 1/sqrt(3)`

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that : tan^(-1)x +tan^(-1). (2x)/(1-x^(2)) = tan^(-1) . (3x-x^(3))/(1-3x^(2)) , |x| lt 1/(sqrt(3))

If x=sin^(-1)((2t)/(1+t^2))"and"y=tan^(-1)((2t)/(1-t^2)),-1

If x=sin^(-1)((2t)/(1+t^(2))) and y=tan^(-1)((2t)/(1-t^(2))),-1

sinx = (2t)/(1+t^(2)), tan y = (2t)/(1-t^(2))

Prove that 3tan^(-1)((1)/(2+sqrt(3)))-tan^(-1)((1)/(2))=tan^(-1)((1)/(3))

Derivative of tan^(-1)((2t)/(1-t^(2)))w.r.tsin^(-1)((2t)/(1+t^(2))) is

If x=sin^(-1)((2t)/(1+t^(2)))andy=tan^(-1)((2t)/(1-t^(2))), then prove that (dy)/(dx)=1 .

tan^(-1)x w.r.t. tan^(-1)sqrt(1+x^(2))

If x=sin^(-1)((2t)/(1+t^(2))) and y=tan^(-1)((2t)/(1-t^(2))),t>1. Prove that (dy)/(dx)=-1

Solve : 3 tan^(-1) (1/(2+sqrt(3)))-tan^(-1)(1/x) = tan^(-1) (1/3)