Home
Class 12
MATHS
Solve 2cos^(-1)x=sin^(-1)(2xsqrt(1-x^2))...

Solve `2cos^(-1)x=sin^(-1)(2xsqrt(1-x^2))`

Promotional Banner

Similar Questions

Explore conceptually related problems

Solve 2cos^(-1)x=sin^(-1)(2x sqrt(1-x^(2)))

cos^(-1)(2xsqrt(1-x^(2)))

Solve 2 cos^(-1) x = sin^(-1) (2 x sqrt(1 - x^(2)))

xsqrt(1+2x^(2))

The value of x for which 2 sin^(-1)x =sin^(-1)(2xsqrt(1-x^(2))) is

Solve the equation 2sin^(-1)x=tan^(-1)((2xsqrt(1-x^2))/(1-2x^2))

int(1)/(sin^(-1)xsqrt(1-x^(2)))dx

Statement -1: if -1lexle1 then sin^(-1)(-x)=-sin^(-1)x and cos^(-1)(-x)=pi-cos^(-1)x Statement-2: If -1lexlex then cos^(-1)x=2sin^(-1)sqrt((1-x)/(2))= 2cos^(-1)sqrt((1+x)/(2))

solve sin^(-1)x-cos^(-1)x=sin^(-1)(3x-2)

Show that (i) sin^(-1)(2xsqrt(1-x^2))=2sin^(-1)x ,-1/(sqrt(2))lt=xlt=1/(sqrt(2)) (ii) sin^(-1)(2xsqrt(1-x^2))=2cos^(-1)x ,1/(sqrt(2))lt=xlt=1