Home
Class 12
MATHS
Solve: sin^-1 (x/(sqrt(1+x^2)))- sin (1/...

Solve: `sin^-1 (x/(sqrt(1+x^2)))- sin (1/(sqrt(1+x^2)))= sin^-1 ((1+x)/(1+x^2)) `

Promotional Banner

Similar Questions

Explore conceptually related problems

sin^(-1){(1)/(sqrt(1+x^(2)))}

inte^(sin^(-1)x)((x+sqrt(1-x^2))/(sqrt(1-x^2)))dx=

int(e^x[1+sqrt(1-x^2)sin^-1x])/sqrt(1-x^2)dx

sin^(-1)(2x sqrt(1-x^(2))),x in[(1)/(sqrt(2)),1] is equal to

y=sin^(-1)((x)/(sqrt(1+x^(2))))+cos^(-1)((1)/(sqrt(1+x^(2))))

sin^(-1)x+sin^(-1)sqrt(1-x^(2))

Solve : sin^(-1)( x) + sin^(-1)( 2x) = sin^(-1)(sqrt(3)/2) .

Solve 2cos^(-1)x=sin^(-1)(2x sqrt(1-x^(2)))

Prove that sin^(-1). ((x + sqrt(1 - x^(2))/(sqrt2)) = sin^(-1) x + (pi)/(4) , where - (1)/(sqrt2) lt x lt(1)/(sqrt2)

(d)/(dx)[sin^(-1)(x sqrt(1-x)-sqrt(x)sqrt(1-x^(2)))] is