Home
Class 12
MATHS
Which of the following identities does n...

Which of the following identities does not hold? (A) `sin^-1 x = cot^-1[sqrt((1-x^2))/x],0ltxle1` (B) `sin^-1 x = cot^-1[sqrt((1-x^2))/x],-1,=xlt0` (C) `sin^-1 x = cos^-1 sqrt(1-x^2),0ltxle1` (D) `sin^-1 x= 1-sin^-1 (-x), -1lexle1`

Promotional Banner

Similar Questions

Explore conceptually related problems

sin^(-1)x+sin^(-1)sqrt(1-x^(2))

Write each of the following in the simplest form: (i) sin^(-1){(sqrt(1+x)+sqrt(1-x))/2},\ \ 0 < x <1 (ii) sin{2tan^(-1)(sqrt((1-x)/(1+x)))}

Prove that cot^(-1)((1+sqrt(1-x^(2)))/x)=(1)/(2)sin^(-1)x

f(x)=cos(2tan^-1(sin(cot^-1sqrt((1-x)/x)))) then

Evaluate int(sin^-1sqrt (x)-cos^-1sqrt (x))/(sin^-1sqrt (x)+cos^-1sqrt (x))dx

The solution set of equation sin^(-1)sqrt(1-x^(2))+cos^(-1)x=cot^(-1)((sqrt(1-x^(2)))/(x))-sin^(-1)

Show that (i) sin^(-1)(2xsqrt(1-x^2))=2sin^(-1)x ,-1/(sqrt(2))lt=xlt=1/(sqrt(2)) (ii) sin^(-1)(2xsqrt(1-x^2))=2cos^(-1)x ,1/(sqrt(2))lt=xlt=1

(sin^(-1)sqrt(x)-cos^(-1)sqrt(x))/(sin^(-1)sqrt(x)+cos^(-1)sqrt(x)),x in[0,1]

(dy)/(dx) if y=sin^(-1)x+sin^(-1)sqrt(1-x^(2)),x is 0 to 1

Prove that cos tan^(-1)sin cot^(-1)x=sqrt((x^(2)+1)/(x^(2)+2))