Home
Class 12
MATHS
Solve 3sin^(-1)((2x)/(1+x^2))-4cos^(-1)(...

Solve `3sin^(-1)((2x)/(1+x^2))-4cos^(-1)((1-x^2)/(1+x^2))+2tan^(-1)((2x)/(1-x^2))=pi/3`

Promotional Banner

Similar Questions

Explore conceptually related problems

If quad 3sin^(-1)((2x)/(1+x^(2)))-4cos^(-1)((1-x^(2))/(1+x^(2)))+2tan^(-2)((2x)/(1-x^(2)))=(pi)/(3),where|x|<1 then x is equal to (1)/(sqrt(3))(b)-(1)/(sqrt(3))(c)sqrt(3)(d)-(sqrt(3))/(4)

If: 3 sin^(-1)((2x)/(1+x^(2))) - 4 cos^(-1)((1-x^(2))/(1+x^(2))) + 2 tan^(-1)((2x)/(1-x^(2)))=pi/3 , where |x| lt 1 , then: x=

Solve the following equation for x:3(sin^(-1)(2x))/(1+x^(2))-4(cos^(-1)(1-x^(2)))/(1+x^(2))+2(tan^(-1)(2x))/(1-x^(2))=(pi)/(3)

(3 sin^(-1)) ((2x)/(1+x^2)) - (4 cos^(-1)) ((1-x^2)/(1 + x^2)) + (2 tan^(-1)) ((2x)/(1-x^2)) = π/3

Solve for x : 3 sin^(-1) ((2x)/(1+x^(2))) - 4 cos^(-1) ((1-x^(2))/(1+x^(2))) +2 tan^(-1). ((2x)/(1-x^(2))) = pi/ 2 .

tan^(-1)((2x)/(1-x^2))+cot^(-1)((1-x^2)/(2x))=pi/3

If sin^(-1)((2x)/(1+x^(2)))+cos^(-1)((1-x^(2))/(1+x^(2)))=4 tan^(-1) x then

Solve for x : cos^(-1)((x^2-1)/(x^2+1))+1/2tan^(-1)((2x)/(1-x^2))=(2pi)/3

To prove that tan((1)/(2)sin^(-1)((2x)/(1+x^(2)))+(1)/(2)cos^(-1)((1-x^(2))/(1+x^(2)))=(2x)/(1-x^(2))