Home
Class 12
MATHS
The value of sin(cot^-1x)= (A) sqrt(1+x^...

The value of `sin(cot^-1x)=` (A) `sqrt(1+x^2)` (B) x (C) `(1+x^2)^(-3/2)` (D) `(1+x^2)^(-1/2)`

Promotional Banner

Similar Questions

Explore conceptually related problems

The value of x for which sin(cot^(-1)(1+x))=cos(tan^(-1)x) is (a) (1)/(2) (b) 1(c)0(d)-(1)/(2)

Solve the equations. sin(tan^(-1)x),|x|<1 (a) x/(sqrt(1-x^2)) (B) 1/(sqrt(1-x^2)) (C) 1/(sqrt(1+x^2)) (D) x/(sqrt(1+x^2))

The value of cot(tan^(-1)2x+cot^(-1)2x) is ... (A) 0 (B) 2x (C) 4x (D) pi+2x A B C D

the value of cos(cos^-1x+sin^-1(x-2)) is equal to (A) 0 (B) 1 (C) -1 (D) sqrt(1-x^2).sqrt(x^2-4x+3) +x (x-2)

Prove that cos (tan^(-1) (sin (cot^(-1) x))) = sqrt((x^(2) + 1)/(x^(2) + 2))

The value of x for which "sin"(cot^(-1)(1+x))="cos"(tan^(-1)x) is 1/2 (b) 1 (c) 0 (d) -1/2

d/(dx)(sin^(-1)x+cos^(-1)x) is equal to : (A) (1)/(sqrt(1-x^(2))), (B) (2)/(sqrt(1-x^(2))), (C) 0 (D) sqrt(1-x^(2))

The value of (cot((x)/(2))-tan(x)/(2))^(2)(1-2tan x cot2x) is 1 (b) 2(c)3(d)4

Prove that cot^(-1)((1+sqrt(1-x^(2)))/x)=(1)/(2)sin^(-1)x