Home
Class 12
MATHS
The value of sin^-1 (sqrt(3)/2)+ sin^-1 ...

The value of `sin^-1 (sqrt(3)/2)+ sin^-1 (1/sqrt(2))` is equal to (A) ` sin^-1 ((sqrt(3+1))/(2sqrt(2)))` (B) ` pi-sin^-1 ((sqrt(3+1))/(2sqrt(2)))` (C) ` pi+sin^-1 ((sqrt(3+1))/(2sqrt(2)))` (D) none of these

Text Solution

AI Generated Solution

Promotional Banner

Similar Questions

Explore conceptually related problems

sin^-1(sqrt(3)/2) - sin^-1(1/2)

sin^(-1)((sqrt(3))/(2))-tan^(-1)(-sqrt(3))

The value of sin [ (pi)/(3) - sin^(-1) (- (sqrt(3))/(2))]

Find the value of sin^(-1)sin((sqrt(3)-1)/(2sqrt(2)))

sin^(-1)((1)/(sqrt(2)))-3sin^(-1)((sqrt(3))/(2))=

The value of sin(1/4sin^(-1)(sqrt(63))/8) is 1/(sqrt(2)) (b) 1/(sqrt(3)) (c) 1/(2sqrt(2)) (d) 1/(3sqrt(3))

The value of sin(sin^-1 (1/2)+ cos ^-1 (1/3)) is equal to (A) (sqrt(3)+sqrt(8)/6 (B) (1+2sqrt(6))/6 (C) - (1+2sqrt(6))/6 (D) 0

The value of intsqrt(1+secx)dx is equal to (A) 2sin^-1(sqrt(2)sin(x/2))+c (B) 2cos^-1(sqrt(2)sin(x/2))+c (C) 2sin^-1(sqrt(2)cos(x/2))+c (D) none of these

sin^(-1)(-(sqrt(3))/(2))+cos^(-1)((sqrt(3))/(2))

The value of sin ^(-1) (-(1)/(sqrt2)) + cos ^(-1) (-(1)/(2)) - tan ^(-1) (-sqrt3) + cot ^(-1) (-(1)/(sqrt3)) is