Home
Class 12
MATHS
sin^(-1)(2xsqrt(1-x^2))=2sin^(-1)x is tr...

`sin^(-1)(2xsqrt(1-x^2))=2sin^(-1)x` is true if- `x in [0,\ 1]\ ` b. `[-1/(sqrt(2)),1/(sqrt(2))]` c. `[-1/2,1/2]` d. `[-(sqrt(3))/2,(sqrt(3))/2]`

Promotional Banner

Similar Questions

Explore conceptually related problems

sin^(-1)(2x sqrt(1-x^(2)))=2sin^(-1)x is true if- x in[0,1] b.[-(1)/(sqrt(2)),(1)/(sqrt(2))] c.[-(1)/(2),(1)/(2)]d[-(sqrt(3))/(2),(sqrt(3))/(2)]

Prove that : sin^(-1) (2x sqrt(1-x^(2)) ) = 2 sin^(-1) x , -1/(sqrt(2))le x le 1/(sqrt(2)

Prove that : sin^(-1) (2x sqrt(1-x^(2)))= 2 sin^(-1) x, - 1/(sqrt(2)) le x le 1/(sqrt(2))

sin^(-1)(2x sqrt(1-x^(2)))+sin^(-1)(3x-4x^(3))=(7 pi)/(9)in((1)/(2)*(1)/(sqrt(2))) is

Show that (i) sin^(-1)(2xsqrt(1-x^2))=2sin^(-1)x ,-1/(sqrt(2))lt=xlt=1/(sqrt(2)) (ii) sin^(-1)(2xsqrt(1-x^2))=2cos^(-1)x ,1/(sqrt(2))lt=xlt=1

Prove that : tan^(-1)((2xsqrt(1-x^(2)))/(1-2x^(2))) =2sin^(- 1)x when : - 1/(sqrt(2)) le x le 1/(sqrt(2))

sin^(-1)(2x sqrt(1-x^(2))),x in[(1)/(sqrt(2)),1] is equal to

sin^-1[xsqrt(1-x)-sqrt(x)sqrt(1-x^2)]

Differentiate sin^(-1)(4xsqrt(1-4x^(2)))w.r.t.sqrt(1-4x^(2)) , if x in(-(1)/(2sqrt2),(1)/(2sqrt2))

Differentiate sin^(-1)(2x sqrt(1-x^(2))) with respect to x, if ^(*)-1/(sqrt(2))