Home
Class 12
MATHS
cos^-1 {-sin((5pi)/6)}= (A) - (5pi)/6 (B...

`cos^-1 {-sin((5pi)/6)}=` (A) `- (5pi)/6` (B) `(5pi)/6` (C) `(2pi)/3` (D) `-(2pi)/3`

Text Solution

AI Generated Solution

Promotional Banner

Similar Questions

Explore conceptually related problems

cot^(-1)(-sqrt3)= (a) -pi/6 (b) (5pi)/6 (c) pi/3 (d) (2pi)/3

cos^(-1)((cos(7 pi))/(6)) is equal to ( a ) (7 pi)/(6) (B) (5 pi)/(6) (C) (pi)/(3)(D)(pi)/(6)

The sum of all x in [0,pi] which satisfy the equation sin x+(1)/(2)cos x =sin^(2)(x+(pi)/(4)) is - (A) pi/6 (B) (5pi)/6 (C) pi (D) 2pi

The value of cos^(-1)(cos(5pi)/3)+sin^(-1)(sin(5pi)/3) is pi/2 (b) (5pi)/3 (c) (10pi)/3 (d) 0

If 4cos^(2)theta=3 then theta =---- 1) (pi)/(6),(5 pi)/(6) 2) (pi)/(4),(3 pi)/(4) 3) (pi)/(3),(2 pi)/(3) 4) +-(pi)/(2)

sin^-1 (cos(sin^-1(sqrt(3)/2))= (A) pi/3 (B) pi/6 (C) - pi/6 (D) none of these

sin^-1 (-1/2)+tan^-1 (sqrt(3))= (A) -pi/6 (B) pi/3 (C) pi/6 (D) none of these

In triangle ABC, angle A is greater than angle B. If the measure of angles A and B satisfy the equation 3sinx-4sin^3x-k=0. (A) pi/3 (B) pi/2 (C) (2pi)/3 (D) (5pi)/6

If veca+vecb+vecc=0, |veca|=3, |vecb|=5, |vecc|=7, then angle between veca and vecb is (A) pi/6 (B) (2pi)/3 (C) (5pi)/3 (D) pi/3

7(cos((-5pi)/6)+isin((-5pi)/6))=?