Home
Class 12
MATHS
sin^-1 (-1/2)+tan^-1 (sqrt(3))= (A) -pi/...

`sin^-1 (-1/2)+tan^-1 (sqrt(3))=` (A) `-pi/6` (B) `pi/3` (C) `pi/6` (D) none of these

Promotional Banner

Similar Questions

Explore conceptually related problems

sin^-1 (cos(sin^-1(sqrt(3)/2))= (A) pi/3 (B) pi/6 (C) - pi/6 (D) none of these

sin^-1 (sin ((7pi)/6))= (A) (7pi)/6 (B) pi/6 (C) -pi/6 (D) none of these

sqrt(3)int_0^pi dx/(1+2sin^2x)= (A) -pi (B) 0 (C) pi (D) none of these

int_-pi^(3pi) cot^-1(cotx)dx= (A) pi^2 (B) 2pi^2 (C) 3pi^2 (D) none of these

cot^(-1)(-sqrt3)= (a) -pi/6 (b) (5pi)/6 (c) pi/3 (d) (2pi)/3

The solution of tan^-1 2x+tan^-1 3x= pi/4 is (A) 1/6 (B) 1 (C) {1/6 1} (D) none of these

sin^(-1)((-1)/2) (a) pi/3 (b) -pi/3 (c) pi/6 (d) -pi/6

If sintheta= - 1/2 and tan theta = 1/sqrt(3) then the most general values of theta equal to (A) 2npi+pi/6 (B) 2npi=(5pi)/6 (C) 2npi+(7pi)/6 (D) none of these

sum_(n=1)^oo sin^-1( (sqrt(n)-(sqrt(n-1)))/(sqrt((n)(n+1)) )= (A) pi/4 (B) pi/2 (C) - pi/3 (D) pi/3

If tan^(-1)(cottheta)=2\ theta , then theta= +-pi/3 (b) +-pi/4 (c) +-pi/6 (d) none of these