Home
Class 12
MATHS
The vaue of tan^-1 1+tan^-1 2+tan^-1 3 i...

The vaue of `tan^-1 1+tan^-1 2+tan^-1 3` is (A) 0 (B) 1 (C) `pi` (D) `-pi`

Promotional Banner

Similar Questions

Explore conceptually related problems

If tan^-1 x+tan^-1 2x+tan^-1 3x=pi, then (A) x=0 (B) x=1 (C) x=-1 (D) xepsilonphi

Show that ( tan^(-1) 1 + tan^(-1) 2 + tan^(-1) 3) = pi

" (i) "tan^(-1)1+tan^(-1)2+tan^(-1)3=pi

Prove that tan^(-1) 2 + tan^(-1) 3 = (3pi)/4

Prove that tan^(-1)1+tan^(-1)2+tan^(-1)3=pi

Prove that : tan^(-1)1+tan^(-1)2+tan^(-1)3=pi

Prove that: tan^(-1)1+tan^(-1)2+tan^(-1)3=pi

Prove that : tan^(-1) 1 + tan^(-1) 2 + tan^(-1) 3= pi = 2(tan^(-1) 1 + tan^(-1)((1)/(2)) + tan^(-1)( (1)/(3)))

tan^(-1)2x+tan^(-1)3x=(pi)/(4)

Prove that : tan^(-1)2+tan^(-1)3=(3 pi)/(4)