Home
Class 12
MATHS
If 0ltxlt1, then tan^-1 (sqrt(1-x^2)/(1+...

If `0ltxlt1, then tan^-1 (sqrt(1-x^2)/(1+x)` is equal to (A) `1/2cos^-1 x` (B) `cos^-1 (sqrt(1+x)/2)` (C) `cos^-1 (sqrt(1+x0/4)` (D) `1/2 tan^-1 (sqrt(1+x)/(1-x))`

Promotional Banner

Similar Questions

Explore conceptually related problems

Is tan^(-1) (sqrt((1-x^(2))/(1+x^(2))) ) = 1/2 cos^(-1) x true ?

Prove that : tan^(-1) ((sqrt(1-x^(2)))/(1+x)) = 1/2 cos^(-1) x

tan ^(-1)(sqrt((1-cos 3 x)/(1+cos x)))

(1) / (2) cos ^ (- 1) x = sin ^ (- 1) sqrt ((1-x) / (2)) = cos ^ (- 1) sqrt ((1 + x) / (2 )) = (tan ^ (- 1) (sqrt (1-x ^ (2)))) / (1 + x)

Differentiate tan^(-1)sqrt((1-x^(2))/(1+x^(2))) with respect to cos^(-1)x^(2).

d/(dx)(sin^(-1)x+cos^(-1)x) is equal to : (A) (1)/(sqrt(1-x^(2))), (B) (2)/(sqrt(1-x^(2))), (C) 0 (D) sqrt(1-x^(2))

tan(cos^(-1)x) is equal to (x)/(1+x^(2)) b.(sqrt(1+x^(2)))/(x) c.(sqrt(1-x^(2)))/(x) d.sqrt(1-2x)