Home
Class 12
MATHS
The value of tan{1/2 sin^-1 ((2x)/(1+x^2...

The value of `tan{1/2 sin^-1 ((2x)/(1+x^2))+1/2 cos^-1 ((1-x^2)/(1+x^2))}` is (A) `(2x)/(1-x^2), if 0lexlt1` (B)` (2x)/(1-x^2), if xlt1` (C) not defined if `x.>=1` (D) 0 if `-1lexlt0`

Promotional Banner

Similar Questions

Explore conceptually related problems

To prove that tan((1)/(2)sin^(-1)((2x)/(1+x^(2)))+(1)/(2)cos^(-1)((1-x^(2))/(1+x^(2)))=(2x)/(1-x^(2))

If 0lexle1 then tan{1/2sin^(-1)((2x)/(1+x^(2)))+1/2cos^(-1)((1-x^(2))/(1+x^(2)))} is equal to

(3 sin^(-1)) ((2x)/(1+x^2)) - (4 cos^(-1)) ((1-x^2)/(1 + x^2)) + (2 tan^(-1)) ((2x)/(1-x^2)) = π/3

If -1lexle0 then tan{1/2sin^(-1)((2x)/(1+x^(2)))+1/2cos^(-1)((1-x^(2))/(1+x^(2)))} is equal to

sin [ tan^(-1). (1 - x^(2))/(2x) + cos^(-1) . (1-x^(2))/(1 + x^(2))] is

sin{tan^(-1)[(1-x^(2))/(2x)]+cos^(-1)[(1-x^(2))/(1+x^(2))]}=

If sin^(-1)((2x)/(1+x^(2)))+cos^(-1)((1-x^(2))/(1+x^(2)))=4 tan^(-1) x then

Solve 3sin^(-1)((2x)/(1+x^(2)))-4cos^(-1)((1-x^(2))/(1+x^(2)))+2tan^(-1)((2x)/(1-x^(2)))=(pi)/(3)