Home
Class 12
MATHS
Let cos^-1(x/a)+cos^-1(y/b)=alpha Given ...

Let `cos^-1(x/a)+cos^-1(y/b)=alpha` Given equation represents and ellipse if (A) `alpha=0` (B) `alpha=pi/4` (C) `alpha=pi/2` (D) `alpha=pi`

Promotional Banner

Similar Questions

Explore conceptually related problems

If 0

If cos y=x cos(alpha-y) then (1+x^(2)-2x cos alpha)*(dy)/(dx) is (A) sin alpha (B) -sin alpha (C) cos alpha (D) -cos alpha

Let vec a and vec b be two unit vectors and alpha be the angle between them,then vec a+vec b is a unit vectors,if alpha=(pi)/(4) b.alpha=(pi)/(3) c.alpha=(2 pi)/(3) d.alpha=(pi)/(2)

tan((pi)/(4)+alpha)=(1+sin2 alpha)/(cos2 alpha)

lim_(alpha rarr(pi)/(4))(sin alpha-cos alpha)/(alpha-(pi)/(4))

If 1+cos alpha+cos^(2)alpha+...=2-sqrt(2), then alpha(0

int_ (0) ^ (pi) (xdx) / (1 + cos alpha * sin x) = (pi alpha) / (sin alpha), 0

(cos alpha + (cos ((2 pi) / (3) + alpha)) + cos ((4 pi) / (3) + alpha))

If alpha=cos((2pi)/7)+i sin((2pi)/7) then a quadratic equation whose roots are (alpha+ alpha^(2)+ alpha^(4)) and (alpha^(3)+ alpha^(5)+alpha^(6))

The value of (sin(pi-alpha))/(sin alpha-cos alpha tan.(alpha)/(2))-cos alpha is