Home
Class 12
MATHS
Find the sum of the series sin^2alpha+si...

Find the sum of the series `sin^2alpha+sin^2(alpha+beta)+sin^2(alpha+2beta)…+sin^2(alpha +(n-1) beta)`

Text Solution

AI Generated Solution

Promotional Banner

Similar Questions

Explore conceptually related problems

Find the sum of the series sinalpha+sin(alpha+beta)+sin(alpha+2beta)+sin(alpha+3beta)+.....+sin(alpha+(n-1)beta)

Sum of n terms of the series sinalpha-sin(alpha+beta)+sin(alpha+2beta)-sin(alpha+3beta)+….

What is sin (alpha+beta) - 2 sin alpha cos beta + sin(alpha- beta) =

Sum the infinite series : sinalpha+x sin (alpha+beta)+ x^2/(2!)sin(alpha+2beta)+x^3/(3!) sin (alpha+3beta)+..

Show that: sin^2 alpha + sin^2 beta + 2sinalpha sinbeta cos(alpha+beta)=sin^2 (alpha+beta)

2sin^(2)beta+4cos(alpha+beta)sin alpha sin beta+cos2(alpha+beta)=

sin ^ (2) alpha + sin ^ (2) (alpha-beta) -2sin alpha cos beta sin (alpha-beta) = sin ^ (2)

Prove that: cos2 alpha cos2 beta+sin^(2)(alpha-beta)-sin^(2)(alpha+beta)=cos2(alpha+beta)

Statement-1: sin10^(@)+sin120^(@)+....+sin350^(@)=0 Statement-2: sin alpha+sin (alpha+beta)+....+sin(alpha+(n-1)beta)=(sin(alpha+((n-1)beta)/(2))sin((nbeta)/(2)))/(sin((beta)/(2))), beta ne 2npi.