Home
Class 12
MATHS
Sum to n terms the series tan^-1 (1/(1+1...

Sum to n terms the series `tan^-1 (1/(1+1+1^2))+tan^-1 (1/(1+2+2^2))+tan^-1 (1/(1+3+3^2))+…`

Text Solution

AI Generated Solution

Promotional Banner

Similar Questions

Explore conceptually related problems

Find the sum tan^-1 (1/(3+3.1+1^2))+tan^-1 (1/(3+3.2+2^2))+…+tan^-1 (1/(3+3n+n^2))

Sum the series tan^-1 (x/(1+1*2x^1))+tan^-1 (x/(1+2*3x^2))+…+tan^-1 (x/(1+n*(n+1)x^2))

tan^-1 (1/2) + tan^-1 (1/3) = π/4

Sum the following series to infinity : tan^(-1)(1/(1+1+1^2))+tan^(-1)(1/(1+2+2^2))+tan^(-1)(1/(1+3+3^2))+.................

tan^(-1)((1)/(2))+tan^(-1)((1)/(3))=

Find the sum series: tan^-1 (1/3)+tan^-1 (1/7)+tan^-1(1/13)+…to oo

Find the sum of the series tan^(-1)((1)/(2))+tan^(-1)((1)/(2))+tan^(-1)((1)/(18))+tan^(-1)((1)/(32))+

The sum of the infinite terms of the series "tan"^(-1)((1)/(3))+ "tan"^(-1)((2)/(9)) + tan^(-1)((4)/(33)) + .... is equal to (pi)/(n) The value of n is:

If "S" is the sum of the first "10" terms of the series tan "^(-1)((1)/(3))+tan^(-1)((1)/(7))+tan^(-1)((1)/(13))+tan^(-1)((1)/(21))+.... ,then "tan(S)" is equal to:

tan ^ (- 1) ((1) / (2)) + tan ^ (- 1) ((1) / (3))