Home
Class 12
MATHS
ABCD is a trapezium such that AB and CD ...

ABCD is a trapezium such that AB and CD are parallel and `B C_|_C D` . If `/_A D B""=theta,""B C""=""p""a n d""C D""=""q` , then AB is equal to (1) `(p^2+q^2costheta)/(pcostheta+qsintheta)` (2) `(p^2+q^2)/(p^2costheta+q^2sintheta)` (3) `((p^2+q^2)sintheta)/((pcostheta+qsintheta)^2)` (4) `((p^2+q^2)sintheta)/(pcostheta+qsintheta)`

Promotional Banner

Similar Questions

Explore conceptually related problems

If tan theta=(q)/(p) then find the value of (p sintheta+qcos theta)/(p cos theta+qsintheta)

If p sintheta+qcostheta=3&qsintheta-pcostheta=2 , then p^(2)+q^(2)=?

ABCD is a trapezium such that AB|CD and CB is perpendicular to them.If /_ADB=theta,BC=p, and CD=q, show that AB=((p^(2)+q^(2))sin theta)/(p cos theta+q sin theta)

If tantheta =p/q , then the value of (p sintheta-q costheta)/(p sintheta+q costheta) is

Let P={theta:sintheta-costheta=sqrt2costheta}and Q={theta: sintheta+costheta=sqrt2sintheta} be two sets. Then

Let P={theta:sintheta-costheta=sqrt2cos theta}and Q={theta:sintheta+costheta=sqrt2sintheta} be two ses. Then,

If A=((1,2),(0,1)),P=((costheta, sintheta),(-sintheta, costheta)),Q=P^(T)AP , find PQ^(2014)P^(T) :

If sintheta+costheta=pandsectheta+"cosec"theta=q then prove that q(p^(2)-1)=2p .

If sintheta+costheta=a and (sintheta+costheta)/(sinthetacostheta)=b , then (a) b=(2a)/(a^2-1) (b) a=(2b)/(b^2-1) (c) ab=b^2-1 (d) a+b=1

If p sintheta+qcostheta=aandpcostheta-qsintheta=b, show that : (p+a)/(q+b)+(q-b)/(p-a)=0 .