Home
Class 12
MATHS
The minimum value of cos theta+sintheta+...

The minimum value of `cos theta+sintheta+ 2/(sin2theta)` for `theta in (0, pi/2) ` is (A) `2+sqrt(2)` (B) 2 (C) `1+sqrt(2)` (D) `2sqrt(2)`

Promotional Banner

Similar Questions

Explore conceptually related problems

Find the minimum value of 2cos theta+(1)/(sin theta)+sqrt(2)tan theta in(0,(pi)/(2))

The minimum and maximum values of cos theta+2sqrt(2)sin theta is

int((sintheta+costheta))/sqrt(sin2theta)"d"theta=

The minimum and maximum values of expression y=cos theta(sin theta+sqrt(sin^(2)theta+sin^(2)alpha))

If a cos theta - b sin theta = c, prove that a sin theta + b cos theta = pm sqrt(a^(2) + b^(2) - c^(2)) .

If : cos theta-sintheta=sqrt2.sin theta, "then": costheta+sintheta=

int_(0)^( pi)(sin theta+cos theta)/(sqrt(1+sin2 theta))d theta

The distance between the points (a cos theta+b sin theta,0) and (0,a sin theta-b cos theta) is a^(2)+b^(2)(b)a+ba^(2)-b^(2)(d)sqrt(a^(2)+b^(2))