Home
Class 12
MATHS
If f(x)|cos(2x)cos(2x)"sin"(2x)-cosxcosx...

If `f(x)|cos(2x)cos(2x)"sin"(2x)-cosxcosx-sinxsinxsinxcosx|,t h e n:` `f^(prime)(x)=0` at exactly three point in `(-pi,pi)` `f^(prime)(x)=0` at more than three point in `(-pi,pi)` `f(x)` attains its maximum at `x=0` `f(x)` attains its minimum at `x=0`

Promotional Banner

Similar Questions

Explore conceptually related problems

If f(x)=|"cos"(x+x^2)"sin"(x+x^2)-"cos"(x+x^2)"sin"(x-x^2)"cos"(x-x^2)sin(x-x^2)sin2x0sin2x^2|,t h e n f(-2)=0 (b) f^(prime)(-1/2)=0 f^(prime)(-1)=-2 (d) f^(0)=4

If f(x)=int(sin2x(cos2x-cos4x))/(cos2x(cos2x+cos4x))dx then the value of f((pi)/(3))-f(0) is

Show that f(x)=sin x(1+cos x) is maximum at x=(pi)/(3) in the interval [0,pi]

Show that f(x)=sin x(1+cos x) is maximum at x=(pi)/(3) in the interval [0,pi] .

For the functions f(x)= int_(0)^(x) (sin t)/t dt where x gt 0 . At x=n pi f(x) attains

Find the point at which the slope of the tangent of the function f(x)=e^(x)cos x attains minima,when x in[0,2 pi] .

If f(x)=3+cos^-1(cos(pi/2+x)cos(pi/2-x)+sin(pi/2+x)sin(pi/2-x)) , x in [0,pi] then find the minimum value of f(x) is

If f(x)=|x|+|sin x| for x in(-(pi)/(2),(pi)/(2)) then its left hand derivative at x=0

If f_(1)(x)=2x,f_(2)(x)=3sin x-x cos x then for x in(0,(pi)/(2))

If f(x)=e^(x-[x]+|cos pi x|+|cos2 pi x|+...+|cos n pi x|) then the period of f(x) is