Home
Class 12
MATHS
Show that : sin^8 A-cos^8 A = (sin^2 A -...

Show that : `sin^8 A-cos^8 A = (sin^2 A - cos^2 A) (1-2 sin^2 A*cos^2 A)`

Promotional Banner

Similar Questions

Explore conceptually related problems

Show that: sin^(8)A-cos^(8)A=(sin^(2)A-cos^(2)A)(1-2sin^(2)A cos^(2)A)

Show that (i) sin^(8)A-cos^(8)A=(sin^(2)A-cos^(2)A)(1-2sin^(2)A.cos^(2)A) (ii) (1)/(sec A-tan A)-(1)/(cos A)=(1)/(cos A)-(1)/(sec A + tan A)

sin ^ (8) A-cos ^ (8) A = (sin ^ (2) A-cos ^ (2) A) (1-2sin ^ (2) A cos ^ (2) A)

prove that sin^(8)x-cos^(8)x=(sin^(2)x-cos^(2)x)(1-2sin^(2)x cos^(2)x)

int(sin^8x-cos^8x)/(1-2sin^2xcos^2x)dx

(1-sin A-cos A)^(2)=2(1-sin A)(1-cos A)

(1-sin A-cos A)^(2)=2(1-sin A)(1-cos A)

(1-sin A-cos A)^(2)=2(1-sin A)(1-cos A)

Show that : Cos^4A - Sin^4A = Cos^2A - Sin^2A = 2 Cos^2A - 1

Prove that : (sin A+cos A)/(sin A-cos A)+(sin A-cos A)/(sin A+cos A)=(2)/(sin^(2)-cos^(2)A)