Home
Class 12
MATHS
Prove that: 3(sin x - cos x)^4 + 4 (sin^...

Prove that: `3(sin x - cos x)^4 + 4 (sin^6 x + cos^6 x) + 6 (sin x + cos x)^2 = 13`

Text Solution

AI Generated Solution

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that: 3 (sin x-cos x) ^ (4) +6 (sin x + cos x) ^ (2) +4 (sin ^ (6) x + cos ^ (6) x) -13 = 0

3(sin x- cos x )^(4) + 6(sin x+ cos x )^(2) +4 (sin ^(6) x+ cos ^(6) x)=

Show that: 3(sin x-cos x)^(4)+6(sin x+cos x)^(2)+4(sin^(6)x+cos^(6)x)=13

Find the value of : 2 (sin^(6) x + cos^(6)x) - 3 (sin^(4) x + cos ^(4)x) + 2 .

(" sin 8x cos x- sin 6x cos 3x")/(" cos 2x cos x - sin 4x sin 3x")=

If f(x) = 3(sin x - cos x)^(4) + 6(sin x + cos x)^(2) +4(sin^(6)x + cos^(6)x) and f(pi/7) = 13 then find f (2pi/7) .

(cos 4x sin 3x -cos 2x sin x )/(sin 4x sin x+ cos 6x cos x)= tan 2x

Prove that ("cos " 6x + " cos " 4x)/("sin " 6x - "sin " 4x) = " cot x