Home
Class 12
MATHS
If sin^4 A + sin^2 A=1 then prove that 1...

If `sin^4 A + sin^2 A=1` then prove that `1/(tan^4A)+1/(tan^2A)=1`

Promotional Banner

Similar Questions

Explore conceptually related problems

If sin^(4)A+sin^(2)A=1 then prove that (1)/(tan^(4)A)+(1)/(tan^(2)A)=1

If sin^(4)A+sin^(2)A=1, prove that: tan^(4)A-tan^(2)A=1

If tan B=(n sin A*cos A)/(1-n sin^(2)A), then prove that tan(A-B)=(1-n)tan A

Prove that: sec^4A(1-sin^4A) -2 tan^2A=1 .

if cos A=(4)/(5) then prove that (tan A)/(1+tan^(2)A)=(sin A)/(sec A)

If sin2A=lambda sin2B prove that ((tan(A+B))/(tan(A-B)))=(lambda+1)/(lambda-1)

Prove: sin^(2)A+(1)/(1+tan^(2)A)=1

Prove that (sin2A)/(1+cos2A)=tan A

If cos A+cos B=(1)/(2) and sin A+sin B=(1)/(4) prove that: tan((A+B)/(2))=(1)/(2)

i) If tan (A+B) = n tan (A-B), prove that: (n+1)/(n-1) = (sin2A)/(sin2B)