Home
Class 12
MATHS
If sin^4 A + sin^2 A=1, prove that: tan^...

If `sin^4 A + sin^2 A=1`, prove that: `tan^4 A - tan^2 A =1`

Text Solution

AI Generated Solution

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that: sec^4A(1-sin^4A) -2 tan^2A=1 .

If sin^(4)A+sin^(2)A=1 then prove that (1)/(tan^(4)A)+(1)/(tan^(2)A)=1

Prove that sin^(2) A+ sin^(2) A tan^(2) A = tan^(2) A .

If tan B=(n sin A*cos A)/(1-n sin^(2)A), then prove that tan(A-B)=(1-n)tan A

If sin2A=lambda sin2B prove that ((tan(A+B))/(tan(A-B)))=(lambda+1)/(lambda-1)

If cos A+cos B=(1)/(2) and sin A+sin B=(1)/(4) prove that: tan((A+B)/(2))=(1)/(2)

i) If tan (A+B) = n tan (A-B), prove that: (n+1)/(n-1) = (sin2A)/(sin2B)

tan ^ (2) A-sin ^ (2) A = sin ^ (4) A sec ^ (4) A = tan ^ (2) A sin ^ (2) A

if cos A=(4)/(5) then prove that (tan A)/(1+tan^(2)A)=(sin A)/(sec A)

If tan^4 x-tan^2 x=1 , then the value of sin^4 x+Sin^2 x is: यदि tan^4 x-tan^2 x=1 , तो sin^4 x+Sin^2 x का मान है: