Home
Class 12
MATHS
If Tn=sin^n x+cos^n x, prove that 2T6-3T...

If `T_n=sin^n x+cos^n x`, prove that `2T_6-3T_4+1=0`

Promotional Banner

Similar Questions

Explore conceptually related problems

If T_(n)=sin^(n)x+cos^(pi)x prove that (T_(3)-T_(5))/(T_(1))=(T_(5)-T_(7))/(T_(3))

Prove the trigonometric identities: If T_(n)=sin^(n)theta+cos^(n)theta, prove that (T_(3)-T_(5))/(T_(1))=(T_(5)-T_(7))/(T_(3))

If T_n =sin^n theta+cos^n theta, then (T_6-T_4)/T_6 =m holds for values of m satisfying (A) m in [-1, 1/3] (B) m in [0, 1/3] (C) m in [-1,0] (D) m in [-1, - 1/2]

If T_n = sin^(n)theta + cos^(n)theta then prove that (T_5 -T_3): (T_7- T_5) = T_1 :T_3 .

If T_(n)=sin^(n)theta+cos^(n)theta ,prove that (i)(T_(3)-T_(5))/(T_(1))=(T_(5)-T_(7))/(T_(3)) (ii) 2T_(6)-3T_(4)+1=0 (iii) 6T_(10)-15T_(8)+10T_(6)-1=0

If T_(n)=sin^(n)theta+cos^(n)theta , then (T_(6)-T_(4))/(T_(6))=m holds for values of m satisfying

If T_(n)=sin^(n)theta+cos^(n)theta , then (T_(6)-T_(4))/(T_(6))=m holds for values of m satisfying

If T_(n)=cos^(n)theta+sin ^(n)theta, then 2T_(6)-3T_(4)+1=

If T_(n)=sin^(n)theta+cos^(n)theta then (T_(3)-T_(5))/(T_(1))=?

If t_0,t_1, t_2,...,t_n are the terms in the expansion of (x+a)^n then prove that (t_0-t_2+t_4-...)^2+(t_1-t_3+t_5-...)^2=(x^2+a^2)^n .