Home
Class 12
MATHS
Prove that sin^2theta=(x+y)^2/4xy is pos...

Prove that `sin^2theta=(x+y)^2/4xy` is possible for real values of `x` and `y` only when `x = y` and `x!=0`.

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that sin^(2)theta=((x+y)^(2))/(4)xy is possible for real values of x and y only when x=y and x!=0.

Show that sin^(2)theta=(x^(2)+y^(2))/(2xy) is possible for real value of x and y only when x=y!=0

Prove that the relation sin^(2)theta = (x+y)^(2)/4xy is not 4xy possible for any real theta where x in R , y in R such that |x | ne ly| .

sin^(2)theta=((x+y)^(2))/(4xy) where x,y in R gives theta if and only if

The equation sin^(2)theta=(x^(2)+y^(2))/(2xy),x,y!=0 is possible if

If sin theta=(x^2-y^2)/(x^2+y^2) then find the values of cos theta and cot theta

Show that the equation sec^(2)theta=(4xy)/((x+y)^(2)) is only possible when x=y

xgt2ygt0 and 2log(x-2y)=log xy Possible values of x/y is/are

sec^(2)theta=(4xy)/((x+y)^(2)) is true if and only if x+y!=0 (b) x=y,x!=0x=y( d ) x!=0,y!=0

sec^(2)theta = 4xy/(x+y)^(2) is true if and only if