Home
Class 12
MATHS
Show that sin^2 theta = (x^2+y^2)/(2xy) ...

Show that `sin^2 theta = (x^2+y^2)/(2xy)` is possible for real value of `x and y` only when `x= y !=0`.

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that sin^(2)theta=((x+y)^(2))/(4)xy is possible for real values of x and y only when x=y and x!=0.

The equation sin^(2)theta=(x^(2)+y^(2))/(2xy),x,y!=0 is possible if

If sin^(2)theta=(x^(2)+y^(2)+1)/(2x) . Find the value of x and y.

If sin theta=(x^2-y^2)/(x^2+y^2) then find the values of cos theta and cot theta

Prove that the relation sin^(2)theta = (x+y)^(2)/4xy is not 4xy possible for any real theta where x in R , y in R such that |x | ne ly| .

Show that the equation sec^(2)theta=(4xy)/((x+y)^(2)) is only possible when x=y

sec^(2)theta = 4xy/(x+y)^(2) is true if and only if

sin^(2)theta=((x+y)^(2))/(4xy) where x,y in R gives theta if and only if