Home
Class 12
MATHS
Evaluate sin{ n pi+(-1)^(n) (pi)/(4), wh...

Evaluate `sin{ n pi+(-1)^(n) (pi)/(4)`, where n is an integer.

Promotional Banner

Similar Questions

Explore conceptually related problems

Evaluate tan{(-1)^(n)(pi)/(4)} where n is an integer

Evaluate the limit: (lim_(n rarr oo)cos(pi sqrt(n^(2)+n)) when n is an integer

Evaluate: int_(-(pi)/(4))^(n pi-(pi)/(4))|sin x+cos x|dx

Find the minimum value of n for which tan^(-1)((n)/(pi))>(pi)/(4),n in N

Evaluate: lim_(x rarr oo)sin^(n)((2 pi n)/(3n+1)),n in N

Find lim_(xrarr(2n+1)pi^(+)) sin([sinx](pi)/6) , where [.] is a greatest integer function and "n" epsilonI .

If 4cos x sin x*2sin x = 3sin x, then x = (i) n pi+(-1)^(n) (pi)/(10) (ii) n pi-(-1)^(n) ( pi)/(10) (iii) 2n pi+-(pi)/(10) (iv) n pi+(pi)/(10)

If n is be a positive integer,then (1+i)^(n)+(1-i)^(n)=2^(k)cos((n pi)/(4)), where k is equal to

The expression cos3 theta+sin3 theta+(2sin2 theta-3)(sin theta-cos theta) is positive for all theta in (2n pi-(3 pi)/(4),2n pi+(pi)/(4)),n in Z(2n pi-(pi)/(4),2n pi+(pi)/(6)),n in Z(2n pi-(pi)/(3),2n pi+(3 pi)/(3)),n in Z(2n pi-(pi)/(4),2n pi+(3 pi)/(4)),n in Z

The equatin 2x = (2n +1)pi (1 - cos x) , (where n is a positive integer)